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ABSTRACT 

Many of the datasets encountered in statistics are two-dimensional 

in nature and can be represented by a matrix.  Classical clustering 

procedures seek to construct separately an optimal partition of rows 

or, sometimes, of columns. In contrast, co-clustering methods 

cluster the rows and the columns simultaneously and organize the 

data into homogeneous blocks (after suitable permutations). 

Methods of this kind have practical importance in a wide variety of 

applications such as document clustering, bioinformatics, and 

collaborative filtering. Our goal is to present a comprehensive 

survey of co-clustering –models and algorithms– under different 

approaches. 

KEYWORDS 

Co-clustering, Data Science 

Biography 

Co-clustering or block clustering [8-13, 4] is an important 

extension of traditional one-sided clustering that addresses the 

problem of simultaneous clustering of both dimensions of data 

matrices. Since the works of [16, 5], co-clustering, under various 

names, has been successfully used in a wide range of application 

domains where the co-clusters can take different forms. For 

instance, in bioinformatics co-clustering, referred to as biclustering 

[19, 14, 15], is used to cluster genes and experimental conditions 

simultaneously, in collaborative filtering [17] to group users and 

items simultaneously, and in text mining [1-3, 6, 7, 18] to group 
terms and documents simultaneously. 

Co-clustering exhibits several practical advantages making it 

possible to meet the growing needs in several current areas of 

interest, in terms of effectiveness, scalability and visualization. 
Below, we summarize some key properties of co-clustering:  

- By intertwining row clustering and column clustering at each 

stage, co-clustering performs an implicitly adaptive 

dimensionality reduction, which is imperative to deal with high 

dimensional sparse data. This makes it possible (i) to develop 

efficient algorithms with a dramatically smaller number of 

parameters (ii) to reduce the original data matrix into a much 

simpler and condensed data matrix with the same structure. 

- Co-clustering exploits the inherent duality between rows and 

columns of data matrices making it possible to enhance the 

clustering along both dimensions, by using the information 

contained in column clusters during row assignments and vice 

versa.  

- Far from adding complexity, co-clustering is more informative 

than one-sided clustering, and produces meaningful clusters. In 

the case of document-term matrices, for example, co-clustering 

annotates sets of documents automatically by clusters of terms. 

Several approaches have been proposed in order to address the 

problem of co-clustering and to date, there is no co-clustering 

approach that works better than the others in all situations. We aim 

to give a comprehensive survey of co-clustering. 
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